
USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  309

I/O Stack Optimization for Smartphones

Sooman Jeong1, Kisung Lee2,*, Seongjin Lee1, Seoungbum Son2,*, and Youjip Won1

1 Hanyang University, Seoul, Korea
2Samsung Electronics, Suwon, Korea

Abstract
The Android I/O stack consists of elaborate and mature
components (SQLite, the EXT4 filesystem, interrupt-
driven I/O, and NAND-based storage) whose integrated
behavior is not well-orchestrated, which leaves a sub-
stantial room for an improvement. We overhauled the
block I/O behavior of five filesystems (EXT4, XFS,
BTRFS, NILFS, and F2FS) under each of the five dif-
ferent journaling modes of SQLite. We found that the
most significant inefficiency originates from the fact that
filesystem journals the database journaling activity; we
refer to this as the JOJ (Journaling of Journal) anomaly.
The JOJ overhead compounds in EXT4 when the bulky
EXT4 journaling activity is triggered by an fsync() call
from SQLite. We propose (i) the elimination of unnec-
essary metadata journaling for the filesystem, (ii) exter-
nal journaling and (iii) polling-based I/O to improve the
I/O performance, primarily to improve the efficiency of
filesystem journaling in the SQLite environment. We ex-
amined the performance trade-offs for each combination
of the five database journaling modes, five filesystems
and three optimization techniques. When we applied
three optimization techniques in existing Android I/O
stack, the SQLite performance (inserts/sec) improved by
130%. With the F2FS filesystem, WAL journaling mode
(SQLite), and the combination of our optimization ef-
forts, we improved the SQLite performance (inserts/sec)
by 300%, from 39 ins/sec to 157 ins/sec, compared to the
stock Android I/O stack.

1 Introduction
Smart devices, e.g., smartphones, tablets, and smart TVs,
have become mainstream computing devices and are
quickly replacing their predecessor, PCs. Smartphones
and tablets have become the dominant source of DRAM
consumption [17] and account for 45% of Internet web
browsing [18]. They are becoming the personal comput-

* This work was done while the author was a graduate student at
Hanyang University.

ing devices for a variety of applications, including so-
cial network services, games, cameras, camcorders, mp3
players, and web browsers.

The application performance of a smartphone is not
governed by the speed of its airlink, e.g., Wi-Fi, but
rather by the storage performance, which is currently uti-
lized in a quite inefficient manner [11]. Furthermore,
one of the main sources of this inefficiency is an ex-
cessive I/O activity caused by uncoordinated interac-
tions between EXT4 journaling and SQLite journaling
[14]. Despite its significant implications for the overall
smartphone performance, the I/O subsystem behavior of
smartphones has not been studied nearly as thoroughly as
those in enterprise servers [26, 23], web servers [4, 10],
OLTP servers [15], and desktop PCs [34, 8].

In this work, we present extensive measurement re-
sults to understand Android’s I/O behavior and propose
techniques to optimize the individual layers so that the
overall Android I/O stack behaves much more efficiently
when the layers are integrated. The Android I/O stack
is a collection of elaborate and mature software layers
(SQLite, EXT4, the interrupt-driven I/O of the Linux ker-
nel, and NAND-based storage), each of which has gone
through several years of development and refinement.
When the layers are integrated, the resulting I/O behav-
ior is not well-orchestrated and leaves a substantial room
for an improvement. We overhaul the I/O stack of the
Android platform from DBMS to a storage device and
propose several techniques to improve the performance.
Our contributions are as follows:
• Starting from EXT4, we performed an extensive
performance study of five filesystems (BTRFS, XFS,
NILFS, and F2FS [1]) in one of the most recent Android-
based smartphones and examined how they interact with
each journaling mode of SQLite. We found that SQLite
journaling interacts with the EXT4 journaling layer in
an unexpected way and, the EXT4 filesystem stresses
the storage device in a way that was rarely seen before.

310  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

We found that recently introduced F2FS can be a good
remedy for Journaling of Journal anomaly which current
stock Android I/O stack suffers from.
• Examining five journal modes of SQLite, we found
that Write-Ahead-Logging mode(WAL) yields the best
performance since it generates smallest amount of the
synchronous random writes amongst all SQLite journal
modes.
• We propose the use of external journaling, in which the
filesystem journal is maintained in a separate storage de-
vice to explicitly preserve the access locality induced by
the filesystem journal file access. This approach enables
the FTL layer of the NAND storage to more effectively
exploit the locality of the incoming I/O stream so that it
can reduce the NAND flash management overhead, e.g.,
garbage collection in page mapping and the log block
merge operation in hybrid mapping.
• We found that SQLite triggers a significant amount
of synchronous random write traffic when it commits
its journal file to the filesystem, a significant fraction of
which is not required. We tuned SQLite to eliminate this
random write I/O by employing fdatasync() in place
of fsync().
• NAND-based storage is sufficiently fast, and state-of-
the-art smartphones are equipped with a sufficient num-
ber of CPU cores. We developed a polling-based I/O sys-
tem for Android storage devices and studied its effective-
ness.

Combining these optimization efforts with the opti-
mal choices for the filesystem and database journaling
mode of SQLite (i.e., by F2FS, WAL journaling mode
in SQLite, using external journaling, eliminating unnec-
essary metadata commits, and polling-based I/O), we
achieved a 300% improvement in the SQLite perfor-
mance (inserts/sec) compared to the stock Android plat-
form.

The remainder of the paper is organized as follows:
Section 2 presents the background. The I/O characteris-
tics of Android is briefly described in Section 3, and the
current Android I/O stack is examined in Section 4. Sec-
tion 5 explores various filesystem choices for Android.
Section 6 provides optimization techniques for the An-
droid I/O stack. Section 7 presents the results of our in-
tegration of the proposed schemes. Section 8 describes
other works related to this study. Our conclusions are
presented in Section 9.

2 Background
2.1 Android I/O Stack
Google Android is an open-source Linux-based operat-
ing system designed for mobile devices. Figure 1 illus-
trates the architecture of Android. Android applications
are written in Java and packaged as .apk (Android Ap-
plication Package) files. Android provides a set of li-

�������
������������
�����
��� �� ���

��

��
	�
���
��������� ���
����� �������

�����
�����
������

�
������ �� � ­������

�
�

��­�
����

����� � ���� ����
�����	�

��������� ��������	

��� �������
�����		����� ���������
­�����������

��

��� � ���� ������� ���
��� ���������������
��������� ���������
������

�� ��

��������� ��
��� ���

�������

���������
������� ����������� �
�� �������� �

��

�
������� ��
��� ��
�
���
����
�
���

Figure 1: Android Architecture and Storage Partition

braries used extensively by various system components
and applications; some of the most widely used libraries
are SQLite, libc, and the media libraries. The Linux
kernel provides core services, such as memory manage-
ment, process management, security, networking, and a
driver model. Android uses the Dalvik virtual machine
(VM) with just-in-time compilation to run .dex (Dalvik
Executable) files, and an application runs on top of the
Dalvik VM.

We define the Android I/O stack as a set of software
and hardware layers used by applications for persistent
data management. The I/O stack of the Android plat-
form consists of the DBMS, filesystem, block device
driver, and NAND flash based storage device. SQLite
and EXT4 are the default DBMS and filesystem, respec-
tively. The Android platform uses interrupt driven I/O
with a CFQ I/O scheduling scheme. The eMMC and SD
card are used as internal and external storage devices, re-
spectively.

Most Android applications use SQLite to manage data
in a persistent manner. SQLite interacts with the under-
lying filesystems through the usual system calls, such as
open(), unlink(), write(), and fsync(). SQLite
uses journaling for recovery. It records rollback informa-
tion at .db-journal file. The database file and journal
file are frequently synchronized with the storage device
using fsync().

Since the release of Android 4.0.4 (Ice Cream Sand-
wich), Android only uses EXT4 to manage its internal
storage, eMMC.

2.2 AndroStep: Android Storage Analyzer
We use Androstep [9] to collect, analyze and replay the
trace in this study. AndroStep is a collection of tools de-
veloped for analyzing the storage stack behavior of An-
droid. It consists of Mobibench1, MOST2, and Mobi-
gen3. Mobibench (mobile benchmark) is an I/O work-
load generator which is specifically designed for An-

1https://github.com/ESOS-Lab/Mobibench, available at
Google playstore

2https://github.com/ ESOS-Lab/MOST
3https://github.com/ESOS-Lab/Mobibench/tree/master/

MobiGen

2

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  311

 0
 20
 40
 60
 80

 100

R
Facebook

W R
Twitter

W

2
2
9

2
5
6
1

2
0

5
0
4

%
 o

f
to

ta
l

Executable
SQLite(db)
SQLite(journal)

Multimedia
Resource
Others

(a) File Types

 0

 20

 40

 60

 80

 100

R
Facebook

W R
Twitter

W

2
2
9

4
8
9
8

2
2

1
0
3
3

%
 o

f
to

ta
l

Metadata Journal Data

(b) Block Types

 0

 20

 40

 60

 80

 100

W
Facebook

W
Twitter

5
7
0
4

1
5
5
8

%
 o

f
to

ta
l

Synchronous Buffered

(c) I/O Modes

 0

 20

 40

 60

 80

 100

R
Facebook

W R
Twitter

W

2
M

B

3
3
M

B

0
.7

M
B

4
M

B

%
 o

f
to

ta
l

Sequential Random

(d) Locality

 0
 20

 40
 60

 80
 100

R
Facebook

W R
Twitter

W

2
2
9

5
7
0
5

2
2

1
5
5
9

%
 o

f
to

ta
l

<=4KB
<=16KB

<=64KB
<=256KB

>256KB

(e) I/O Size

 0

 20

 40

 60

 80

 100

IRQs
Facebook

IRQs
Twitter

%
 o

f
to

ta
l

Touch
eMMC
WiFi(sdio)

GPU
Acc/Gyro
Others

(f) IRQs

Figure 2: I/O distribution of file types, block types, I/O modes, randomness, and I/O size. The number on the top of
each bar indicates the number of respective block I/O for R (Read) and W (Write), respectively.

droid workload generation. It can generate SQLite work-
load (insert, update, and delete) and filesystem work-
load (read, write, create, unlink etc). User can config-
ure SQLite journaling option, filesystem journaling op-
eration, and various filesystem I/O options, e.g., direct
vs. buffered I/O, synchronous I/O, and etc. The accuracy
of Mobibench is validated against existing widely used
benchmark IOZONE [9].

MOST (mobile storage analyzer) is a tool to collect
and to analyze the block level trace. From the block
trace, MOST can identify the block type (metadata, jour-
nal, and data), and the file type of the respective block
such as SQLite journal/database, apk, and etc. The
salient feature of MOST is that it keeps track of this in-
formation for deleted files.

In addition to Mobibench and MOST, Androstep has
a tool to record and to replay the system call trace, Mo-
bigen (Mobile Workload Generator). Mobigen is used to
collect the system calls generated from the human user
behavior for using a given application. By replaying
the system call trace, Mobigen can reproduce the human
driven I/O activities without actual human intervention.

3 I/O Characteristics of Android Applica-
tions

Prior works performed extensive study of Android I/O
characterization and found that a significant fraction of
the I/O’s are generated by SQLite operation [11, 14].
Kim et.al. [11] found that most I/Os in Android plat-
form are related to SQLite database operations. Lee
et.al [14] performed extensive I/O characterization study
and found that dominant fraction of Andriod I/O is syn-

chronous random write caused by misaligned interac-
tion between SQLite and EXT4 filesystem. We analyzed
the I/O behavior of Facebook and Twitter apps, both of
which are highly popular smartphone applications. We
present the analysis results only for Facebook and Twit-
ter apps because the results are well aligned with our
prior study on fourteen popular Android apps and ex-
hibits similar characteristics [14].

The results of the study presented here are based on
the Galaxy S3 (Samsung Exynos 4412 1.4 GHz Quad-
core, 2 GB RAM, 32 GB eMMC, Android 4.0.4 with
Linux kernel 3.0.15)4. We use MOST (Mobile Storage
Analyzer) [9] to collect and analyze the I/O trace. Figure
2 illustrates the results of the analysis. The numbers on
the top of each bar represent the number of I/O requests.
We briefly summarize our findings as follows:
• 90% of the write requests are to the SQLite

database and journal. We categorize the files
into six categories: database file (.db), journal file
(.db-journal), executables (.so, .apk, and dex),
resources (.dat and .xml), and others. We found
that SQLite and its journal file are responsible for
approximately 90% of the write I/O requests in both
Facebook and Twitter apps (Figure 2(a)).

• Writes to the EXT4 journal block constitute 30% of
all writes. We categorized the blocks in the filesys-
tem partition into three types: metadata, journal,

4We have also tested earlier smartphone models, the Nexus S (An-
droid 2.3 “Gingerbread”, 2010 Nov.) and Galaxy S (Android 2.1
“Eclair”, 2010 Mar.). We only show the Galaxy S3 results to save
space. I/O behaviors of earlier smartphone models are similar to that
of the Galaxy S3.

3

312  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

and data. 10% and 30% of all writes are for the
metadata and journal, respectively (Figure 2(b)).

• Of all writes, 70% are synchronous. Figure 2(c)
shows the number of buffered and synchronous
writes. 70% of all writes are synchronous I/O op-
erations, initiated primarily by SQLite.

• 75% of all writes are random. Figure 2(d) shows
the spatial characteristics of the write operations. In
general, random writes are unfavorable for NAND
storage devices and are considered to be a source of
performance degradation.

• 64% of the I/O operations involve data with size less
than 4 KB. Figure 2(e) shows the I/O size distribu-
tion. A dominant fraction (64%) of the I/O requests
has sizes of 4 KB. This is because in SQLite on
EXT4, every update to the database table and the
respective journaling activity are synchronized with
the storage device.

• The interrupt requests issued by the eMMC com-
prise 18% of all interrupts. Figure 2(f) shows
the interrupt requests from each device driver. We
found that the eMMC is responsible for 18% of the
interrupt requests on average.

4 Analysis of the Android I/O Stack
In this section we examine SQLite journaling and EXT4
file system journaling. We focus on how Android storage
system is affected subject to the SQLite journaling mode,
especially SQLite journaling and EXT4 journaling are
both active.

4.1 Journaling in SQLite
SQLite is the most popular persistent data management
module on the Android platform. Even multimedia play-
ers use SQLite to store configuration options such as the
speaker volume. SQLite uses journaling to provide trans-
actional capabilities for its database operations. There
are six journaling modes in SQLite: DELETE, TRUN-
CATE (default in Android 4.0.4), PERSIST, MEMORY,
write-ahead logging (WAL), and OFF. The differences
among these modes are both subtle and profound.

In DELETE, SQLite creates a journal file at the start of
a transaction and deletes it upon completion of the trans-
action. After the journal file is created, SQLite inserts
journal records and calls fsync() to make the journal
file persistent.

In TRUNCATE mode, SQLite truncates the journal
file to zero instead of unlinking it when the transaction
completes. This truncation is performed to relieve the
burden of updating the metadata (for example, the direc-
tory block and inode bitmap) involved in creating and
deleting the database journal file.

PERSIST mode takes a more aggressive approach than
TRUNCATE mode to more efficiently reduce the jour-
naling. In PERSIST mode, SQLite writes zeros at the

beginning of the database journal when the transaction
completes instead of truncating the file. When inserting
a new record into journal file, PERSIST mode uses the
existing blocks (zero-filled block), whereas TRUNCATE
mode allocates a new block. The amount of metadata
committed to filesystem journal is smaller in PERSIST
mode compared to TRUNCATE mode.

In MEMORY mode, the journal records are kept
in memory. Since MEMORY mode does not rely on
filesystem service to maintain journal records, MEM-
ORY mode does not have any variants different from the
filesystem based journal modes.

WAL journaling mode creates a separate WAL file
(.wal) and logs the database updates to the log file.
When the .wal file reaches a specified threshold size,
the outstanding logs of the .wal file are checkpointed to
the database file (.db). In WAL mode, I/O operations
tend to be sequential; therefore, this mode is good for
exploiting the nature of NAND flash storage. The OFF
journaling mode does not use journaling.

4.2 EXT4 Journaling and fsync()
EXT4 has long been the default filesystem on the An-
droid platform. For efficiency, EXT4 journaling main-
tains the log records for multiple system calls as a sin-
gle unit called a journal transaction and uses this as the
unit at which the log records in memory are committed
to filesystem journal. Normally, the overhead of journal-
ing is negligible in EXT4 because a journal transaction
consists of a large number of log records and a journal
transaction is committed to the EXT4 journal file at rel-
atively long intervals, e.g., every 5 sec. In the Android
platform, however, the journaling overhead of EXT4 be-
comes rather significant because of its frequent fsync()
calls. As we show in Section 4.3, the insert operation
in SQLite issues two or more fsync() calls within 2
msec. Each fsync() call triggers the commit of a jour-
nal transaction in which the journal transaction consists
of very few (often one or two) log records that repre-
sent the updated in-core metadata for the respective file.
Consequently, EXT4 journaling becomes very inefficient
when it is triggered by fsync().

Let us physically examine the effect of fsync() in
EXT4 journaling (ordered mode). We generated a 4 KB
write followed by an fsync() call. Figure 3(a) illus-
trates the results. In ordered mode, filesystem first up-
dates the file and commits the respective file metadata to
filesystem journal. As a result of fsync(), there occurs
three write operations to the storage. The first write in the
lower range of LBA is the data update. The second and
the third writes are for committing updated metadata to
filesystem journal; writing the journal descriptor, insert-
ing the log record(s) and writing a journal commit mark.
In Figure 3(a), the journal descriptor and log record are

4

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  313

�

�

��

��

� ��� ��� ��� ��� ��
��
��
���
��
��
��

�
��
� �

	���
�����

����

�������

�������

�

� �

(a) EXT4

�
�
��
��
��
��

� � �� �� �� ���
��
��
���
��
��
��
��
��
� �

�
���������

�������

�����

� �

� �
�

����������
��
������

	���������

(b) BTRFS

�
�
��
��
��

� ��� ��� ��� ��� ����
��
��
���
��
��
��
�

��
� �

	���������

�������

���	�����������
���

(c) NILFS2

�
�
��
��
��

� ��� ��� ��� ��� ��� ����
��
��
���
��
��
��
��
��
� �

��
���
����

����

�	����

� �������
�

(d) XFS

�

��

��

��

� � � � � �� �� �� �� ���
��
��
���
��
��
��
�

��
� �

�
	���	����

�������

�����

�������� �

(e) F2FS

Figure 3: Block I/O pattern: 4 KB write() followed by fsync() EXT4, BTRFS, NILFS2, XFS, and F2FS. Number
at each block I/O denotes I/O size in KB.

written in a single write operation. A single write()

system call entails two additional block write operations,
which are for updating the filesystem journal. The jour-
naling overhead is 200% in this experiment.
fsync() not only creates additional write operations

but also disintegrates the locality of the underlying work-
load. fsync() introduces more randomness to the un-
derlying traffic because of frequent journal commits;
consequently, fsync() significantly degrades the perfor-
mance as well as lifetime of NAND-based storage.

4.3 Journaling of Journal: Interaction be-
tween SQLite and EXT4

Previous study [14] reported that the excessive I/O be-
havior of Android-based smartphones is due to the un-
coordinated interaction between SQLite and EXT4, but
the detailed mechanism has not been studied. We per-
formed an in-depth analysis of the block-level I/O activ-
ity caused by SQLite and EXT4 (ordered mode). The ap-
plication inserted one record (100 Byte) into the SQLite
database table in this experiment. For comprehensive-
ness of the study, we examined four journaling modes of
SQLite: DELETE, TRUNCATE, PERSIST, and WAL.
Figure 4 shows the results. We denote the time of I/O,
the respective starting LBA, and the size. Additionally,
we specified the file where the I/O is designated.

In SQLite, the insert operation primarily consists of
two phases: (i) it logs the insert operation at the SQLite
journal, and (ii) it inserts the record to the actual database
table. SQLite calls fsync() at the end of each phase to
make the results persistent. Each fsync() call makes
EXT4 filesystem update the file (database journal or
database table) and write the updated metadata to the
EXT4 journal.

Let us begin with DELETE mode (Figure 4(a)).
SQLite creates the journal file (.db-journal), en-
ters the journal entry for the insert operation and
then calls fsync(). Upon fsync(), EXT4 writes
.db-journal to storage and commits the updated meta-
data for .db-journal to the EXT4 journal. Then,
SQLite inserts the record into the database table (.db)
and calls fsync() to force the record into storage. When
fsync() is called again, the same steps are repeated as in
the first phase. Finally, SQLite calls unlink() to delete
the .db-journal file. A single insert operation results
in nine I/Os to the storage device.

The differences among three different journaling
modes of SQLite, DELETE, TRUNCATE and PER-
SIST, lie in how SQLite treats the database journal file
(.db-journal). These differences affect the amount of
metadata committed to the EXT4 journal. When SQLite
reuses the journal file (TRUNCATE mode), EXT4 is re-
lieved from the burden of committing the metadata up-
dates caused by the creation and deletion of SQLite jour-
nal. In PERSIST mode, SQLite not only reuses the ex-
isting journal but also reuses the data blocks of the jour-
nal file. Consequently, when SQLite operates in PER-
SIST mode, EXT4 is further relieved from the burden of
committing the updated metadata involved in allocating
a new data block to SQLite journal. Let us look at our
experiment results (Figure 3). The first write operation
designated to filesystem journal in each of Figure 4(a),
Figure 4(b) and Figure 4(c) is for committing the up-
dated metadata for the SQLite journal (.db-journal)
to the EXT4 journal. The sizes of these operations are
24 KB, 16 KB, and 8 KB in DELETE, TRUNCATE, and
PERSIST modes, respectively.

In PERSIST mode, however, SQLite generates addi-

5

314  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

����������� �����������

�
�
�
�
�
��
��

� ��� � ��� ��
��
��
��
�
��
��
��

�
��
� �

	���
�����

����������
���

	������
���

������������
����
�
�����
�������

��������������
����
�
�����
�������

��

�� � � �

�

�

�

�

(a) DELETE

�
�
�
�

� � � � � ��
��
��
��
�
��
��
��
��
��
� �

�����������

�������
�������

������
����
���

	�����
����

�������
�������

�� �

�

�

��

�

�

�

����������� �����������

(b) TRUNCATE

� �� � ��

�
�
�
�
�
��
��

� ��� � ��� � ��� ��
��
��
���
��
��

��
��
�

	������
��

��
������� ����������� �����������

���������
� ���������
�

�
	�������
�

���

�������
�������

�� ���

�

(c) PERSIST

�

�

��

��

� ��� ��� ��� ��� ��� ��� ��� ����
��
��
���
��
��
��
��
��
�

��
���
���

���������

������������
�� �

��
��
	 �����
	

���������
	

(d) Write-Ahead Logging (WAL)

Figure 4: Block I/O accesses of the SQLite insert operation on EXT4 in Galaxy S3 (For four journal modes in SQLite
3.7.5: DELETE, TRUNCATE, PERSIST, and WAL mode). Number at each block I/O denotes I/O size in KB.

tional fsync() call at the end of a transaction (Fig-
ure 4(c)). This is to synchronize the zero fill operation to
the SQLite journal in the storage. PERSIST mode gen-
erates the largest number of I/O (twelve I/O operations)
among the four SQLite journaling modes.

In write-ahead logging (WAL), SQLite logs insert or
update operations in the log file (.db-wal) and calls
fsync(). Then, EXT4 filesystem updates the file (
.db-wal file) and commits the updated metadata to the
EXT4 journal. Because there is only one fsync() call,
the overhead of filesystem journaling is the least severe
and the database operation becomes the most efficient
in WAL mode among five journaling modes of SQLite.
Figure 4(d) shows the I/O trace in WAL mode. Because
SQLite must maintain a sequence of logs in the log file,
WAL mode may consume more storage space.

With an extensive analysis of the Android platform,
we observed that the EXT4 filesystem journals the
database journaling activity via fsync() calls from
SQLite. The bulky journaling mechanism (4 KB log
record) of EXT4 very frequently commits the meta-
data of SQLite database (.db) and SQLite journal
(.db-journal). As a result, EXT4 filesystem, when
used by SQLite generates excessive amount of small
writes and stresses the storage in a way that has rarely
been observed before. The overhead of the filesystem
journaling and database journaling compounds when the

operations are used together. We call this phenomenon
JOJ (journaling of journal). We also found that none
of the SQLite journaling modes are free from JOJ phe-
nomenon, but WAL mode puts the least stress on the
filesystem.

The ideal and classic remedy for the JOJ phenomenon
is to have SQLite directly manage the storage without
filesystem’s assistance or to have Android apps use the
filesystem primitive to maintain their data instead of us-
ing SQLite. These approaches mandate overhauling the
SQLite stack or asking numerous Android application
developers to use the inconvenient filesystem primitive
when writing software for Android.

5 Alternative Filesystems on Android
We analyzed the behavior of four most popular filesys-
tems to observe behavior on the Android platform:
BTRFS [24], NILFS2 [13], XFS [29], and the recently
introduced5 F2FS [1]. We ported these filesystems to the
Galaxy S3 (running Android 4.0.4). We examined the
block-level I/O behavior and the overall performance of
these filesystems.

5.1 Details of Filesystem Behavior
BTRFS [24] uses B+ tree to maintain both the data and
metadata and adopts copy-on-write to update its content.

5Oct 5, 2012

6

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  315

Despite the filesystem’s promising features (e.g., file
and subvolume snapshots, online defragmentation, and
TRIM support for SSD [28]), these two properties, copy-
on-write and B+ tree, make BTRFS the worst filesystem
on the Android platform. BTRFS suffers from the wan-
dering tree problem, where an update in a tree node trig-
gers cascading updates to the root of the tree [5]. Figure
3(b) shows the I/O behavior when fsync() is called af-
ter a 4 KB write. With fsync(), BTRFS writes four B+
tree logs and synchronizes the superblock to the storage
at the end. For a 4 KB write, BTRFS generates five ad-
ditional write operations when fsync() is called.

NILFS2 [13] is a log-structured file system. It merges
a set of data writes and all updated metadata into a seg-
ment and synchronizes the segment to the storage. The
size of a segment is 128 KB in NILFS2. The fsync()

operation in NILFS2 is implemented to flush the entire
logical segment. Figure 3(c) illustrates the result of a 4
KB write followed by fsync(). Each fsync() gener-
ates a 128 KB write. Despite its log-structured nature,
NILFS2 does not exploit its structural advantages be-
cause of its large segment size and inefficient segment
flush mechanism.

XFS [29] is a journaling filesystem that was origi-
nally designed for massive-scale enterprise storage. It
is expected to handle as many files in a directory as the
storage can hold, with a maximum file size of 8 EByte
(8×260). XFS uses the B+ tree-based directory structure
and supports sparse file for scalability. Despite its orig-
inal design objective of massive-scale systems, XFS ex-
hibits very good (the second best) performance in write

followed by fsync(). Figure 3(d) shows the block ac-
cess pattern of XFS. The performance advantage of XFS
arises from two sources: the number of journal writes
and the size of each journal write. The fsync() oper-
ation triggers only one journal write, which is half the
number of journal writes in EXT4. Furthermore, the size
of a journal write in XFS is 1 KB, whereas it is at least 4
KB in EXT4.

Flash-Friendly Filesystem (F2FS) is the youngest
filesystem among the five filesystems that we studied [1].
It is a log-structured filesystem specifically designed for
flash storage. F2FS categorizes incoming write requests
with similar characteristics together to mitigate the over-
head of garbage collection in flash-based storage. Un-
like the existing log-structured filesystems that collect a
sequence of writes in a single large write for filesystem
updates, F2FS can also update the storage in small units,
e.g., 4 KB. This feature makes F2FS behave very effi-
ciently in the corner-case workload, such as write()

followed by fsync(). Figure 3(e) illustrates the I/O
trace in F2FS. It has two writes: one for data and one
for inodes. The size of a write is 4 KB, whereas another
log-structured filesystem, NILFS2 generates a 128 KB

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

S R
EXT4

S R
XFS

S R
BTRFS

S R
NILFS2

S R
F2FS

 0

 50

 100

 150

 200

T
h

ro
u

g
h

p
u

t
(K

B
/s

e
c
)

IO
P

S
 (

4
K

B
)

Figure 5: Sequential and random write using fsync()

on 16GB Transcend SD card. S: Sequential (KB/sec), R:
Random (IOPS), File size: 10MB, I/O size: 4 KB.

I/O in the same situation (Figure 3(c)).

5.2 Summary: write() Followed by fsync()
We now compare the performance of five filesystems in
a typical workload in Android platform: 4 KB write fol-
lowed by fsync(). Figure 5 shows the results. XFS and
F2FS yield the best performance among the five filesys-
tems. F2FS yields the best random write performance
while the edge goes to XFS in a sequential write. The key
factor governing the performance of fsync() is the ef-
ficiency of the filesystem journaling, which we carefully
studied in Section 5.1. In XFS, the size of a log record is
1 KB, and it generates one write per one journal commit.
In EXT4, the size of a log record is 4 KB, and it gener-
ates at least two writes for each journal commit opera-
tion. For random writes, XFS and F2FS surpass EXT4
by approximately 50% and 70%, respectively. BTRFS
exhibits the worst performance in both sequential and
random writes. We will see in Section 6 that the per-
formance of SQLite operations in each filesystem is pre-
cisely proportional to the performance of write() fol-
lowed by fsync() demonstrated in Figure 5.

6 Optimization of the I/O Stack
In this section, we introduce optimization techniques to
improve inefficiency caused by JOJ phenomenon, and
examine the performance effect of individual techniques.

6.1 Eliminating Unnecessary Metadata
Flushes

Our first effort of the optimization is to reduce the
amount of metadata committed to a filesystem jour-
nal, which is caused by fsync() call in SQLite. The
fsync() operation flushes both the metadata and data
to storage. We found that fdatasync() operation is
a good alternative to fsync() [2] because it does not
flush metadata unless it is required to allow a subsequent
data retrieval to be correctly treated. In Android plat-
form, the filesystem is mounted with noatime option,
and SQLite states that it only cares the files size, not
the other attributes. Guaranteed that the underlying OS
and filesystem support fdatasync() correctly, the use
of fdatasync() does not affect the filesystem integrity.

7

316  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

B F E
EXT4

B F E
XFS

B F
BTRFS

B F
NILFS2

B F
F2FS

In
s
e
rt

 /
 s

e
c

(a) Insert/sec

 0
 50

 100
 150
 200
 250
 300
 350

B F E
EXT4

B F E
XFS

B F
BTRFS

B F
NILFS2

B F
F2FS

U
p
d
a
te

 /
 s

e
c

(b) Update/sec
Figure 6: SQLite Insert and update/sec for 1,000
database items on 16GB Transcend SD card. B: base-
line, F: fdatasync(), E: External Journal.

We examined the performance of SQLite operations
(insert and update) using five filesystems after replac-
ing fsync() with fdatasync(). Figure 6 displays the
results. The B, F, and E labels on the X-axis denote
the baseline (fsync() only), fdatasync() enhanced
version, and filesystem with external journaling, respec-
tively. Details regarding external journaling will be pre-
sented in Section 6.3.

By using fdatasync(), we achieved 17% perfor-
mance improvement with EXT4 for an insert opera-
tion. For an insert operation, SQLite performs the best
with F2FS. SQLite exhibits a 111% faster insert rate
(inserts/sec) with F2FS than with EXT4. In BTRFS
and NILFS2, the advantage of using fdatasync() is
marginal. This is because in BTRFS and NILFS2, an
insert operation causes an allocation of new blocks, in
which the metadata are flushed even with fdatasync().
Figure 6(a) illustrates the result.

The advantage of using fdatasync() is more signifi-
cant for an update operation than for an insert operation.
Figure 6(b) illustrates the result. An update is an over-
write on the existing database record from filesystem’s
point of view. In EXT4 and XFS, update operation does
not bring any changes on the metadata such as file size,
indirect blocks, free block bitmaps and etc. Therefore,
using fdatasync() in place of fsync() saves signif-
icant amount of metadata flushes. In EXT4 and XFS,
update/sec increases by 50% and 66% when fsync() is
replaced with fdatasync(), respectively. In contrast,
for copy-on-write based filesystems, e.g., BTRFS and
NILFS, fdatasync() yields little improvement because
an update operation triggers the allocation of new blocks
and subsequent metadata updates, which are flushed even

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

DTPWO
EXT4

DTPWO
XFS

DTPWO
BTRFS

DTPWO
NILFS2

DTPWO
F2FS

In
s
e

rt
 /

 s
e

c

(a) Insert, SQLite 3.7.5 (Public and Galaxy S3)

 0
 50

 100
 150
 200
 250
 300
 350

DTPWO
EXT4

DTPWO
XFS

DTPWO
BTRFS

DTPWO
NILFS2

DTPWO
F2FS

U
p

d
a

te
 /

 s
e

c

(b) Update, SQLite 3.7.5 (Public)

Figure 7: SQLite performance (with fsync()) under
varying journal modes, 1,000 database items on 16GB
Transcend SD card. D: DELETE, T: TRUNCATE, P:
PERSIST, W: WAL, O: OFF

when using fdatasync(). For an update operation,
F2FS yields the best performance among the five filesys-
tems. When we used F2FS with fdatasync(), the
SQLite performance improved by 250% compared to the
baseline platform (SQLite on EXT4 with fsync()).

6.2 Using the Optimal Journaling Mode in
SQL

The I/O performance is very sensitive to the journaling
mode of the underlying DBMS. We tested five journaling
modes (DELETE, TRUNCATE, PERSIST, WAL, and
OFF) of SQLite on each of the five filesystems (EXT4,
NILFS2, XFS, BTRFS, and F2FS) and measured the
performance of SQLite (insert and update). Figure 7
shows the results. The performance of an insert opera-
tion decreased by more than 50% when we used one of
DELETE, TRUNCATE or PERSIST compared to when
we turned off the journal. In all filesystems, WAL mode
yields the best insert/sec performance among four jour-
naling modes (Figure 7(a)).

In an update operation, WAL mode yields three times
better performance compared to the other journaling
modes in all filesystems (Figure 7(b)). It should be noted
that different from the publicly available SQLite, Galaxy
S3 version of SQLite does not create any journal file in
update operation. This yields significantly better perfor-
mance, but the update operation can be unrecoverable6.

For insert and update operations, F2FS is the best-
performing filesystem for most of the journaling modes.

6We do not include the performance result due to space limit

8

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  317

 0 20 40 60 80 100 120

L
o

g
ic

a
l B

lo
ck

 A
d

d
re

ss
 (

M
B

)

Time (Sec)

Journal IO

Data IO

 770

 780

 1160

 1170

Figure 8: 4 KB random write followed by
fsync()(EXT4)

When we replace EXT4 with F2FS, SQLite performance
increases at least by 67%. This is because F2FS only
generates two 4KB I/Os, one for data and the other for
metadata, whereas EXT4 generates 3 to 12 random I/Os
depending on the journal modes. For all filesystems,
WAL mode yields the best performance because all the
log data created from insert and update operations are
appended to .db-wal file and there occurs only one
fsync() call. BTRFS exhibits the worst performance
for both insert and update operations because BTRFS in-
duces more write() calls than any other filesystems due
to wandering tree behavior.

In summary, the WAL mode is the optimal journaling
mode for the Android platform from performance point
of view. Despite its performance benefits, Write-Ahead-
Logging has some issues, space requirement and recov-
ery time. These need to be dealt with in the separate
context.

6.3 External Journaling
EXT4 and XFS have an option of storing journal blocks
on a separate block device. This option is called external
journaling. We now show that external journaling can
be a viable option to remove randomness in the aggre-
gate traffic and to cluster correlated writes together to the
same storage region such that the underlying NAND stor-
age can easily exploit the locality in the traffic [16, 20].

In Figure 8, we plot the I/O traces from a 4 KB ran-
dom write followed by fsync() in the EXT4 filesystem.
The data file is in the 1160 to 1170 MB range, whereas
the EXT4 journal blocks are in the 770 to 780 MB range.
We can clearly see that the aggregate traffic consists of
an interleaved mixture of two different I/O streams; the
locality in the data region is random, whereas that in the
journal region is sequential. Separating the data and jour-
nal I/Os appears to be an obvious next step, which allows
the FTL of the underlying NAND-based storage to eas-
ily identify and to exploit the locality in the incoming I/O
stream. The recent eMMC interface standard [3] allows
physical partitioning of the internal storage. Thus, exter-
nal journaling can indeed be a practical option for future
smartphone storage.

We examined the effectiveness of external journaling
in EXT4 and XFS. We used a 16 GB Transcend SD card

Table 1: Throughput of 4 KB random write followed by
fsync() on Internal eMMC with EXT4

of
thread Scenario Idle HD Record

base poll base poll

eM
M

C 1 KIOPS 1002 981 667 756
CPU (%) 7.5 10.9 26.4 30.2

10 KIOPS 2609 2705 2136 2351
CPU (%) 11.1 12.9 30.1 33.1

 1

 10

 100

 1000

 10000

 100000

Interrupt Poll

C
o
n
te

x
t
S

w
it
c
h
e
s

(c
o
u
n
t
/
M

B
)

Involuntary
Voluntary

Total

Figure 9: Number of context switches performed in
interrupt-driven I/O (baseline) and polling-driven I/O

and internal eMMC for the data storage and the external
journal, respectively. The results are shown in Figure 6,
where E stands for external journal. External journaling
yields a significant performance improvement in EXT4;
the insert rate is improved by 30%, and the update rate is
improved by 39%. The improvement in XFS was not as
great as that in EXT4 because the journaling overhead in
XFS is not as significant as in EXT4.

6.4 Polling-based I/O
Increasing number of CPU cores and decreasing I/O la-
tency of a block device have led to a rediscovery of
the value of polling-based I/O [32, 27]. State-of-the-art
smartphones contain quad-core CPUs and NAND-based
storage latency is an order of magnitude smaller than that
of legacy hard disk drive. In this environment, interrupt-
driven I/O may hinder the performance of a system due
to context switches. When many small I/Os are gener-
ated from the block I/O layer, the I/O daemon for the
eMMC, mmcqd, is subject to significant context switch
overhead. Our results below show that this can indeed
be the case and also show that polling-based I/O can pro-
vide a superior I/O performance to interrupt driven one
without sacrificing the overall system performance.

We modify the I/O subsystem for the Android plat-
form so that the mmcqd uses polling to access the stor-
age device. There are two issues in polling-based I/O:
CPU monopolization and power consumption. We per-
form an experiment if the polling based I/O interferes
with the ongoing application, particularly CPU inten-
sive one. We ran a HD-quality (1920x1080 at 30 fps)
video recording application concurrently with our bench-
mark process. We found the soft real-time requirement of

9

318  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

video recording is well preserved even when the I/O sub-
system is driven by polling. We perform another set of
experiment to examine the power consumption behavior
of polling driven I/O subsystem. Polling-based I/O may
consume more CPU cycles and may reduce the oppor-
tunity for the CPU to stay in low-power mode. Accord-
ing to our experiment, CPU utilization increases by 4%
when we use polling based I/O. In smartphone, dominant
source of energy consumption in LCD and Wi-Fi [6, 33].
We carefully argue that energy overhead of polling based
I/O is marginal and therefore polling based I/O is not an
infeasible option.

Figure 9 shows the number of context switches made
by the mmcqd daemon for the baseline and poll-driven
I/O. We observed that the number of voluntary context
switches is reduced to 1/100 and the total number of con-
text switches is reduced to 1/50.

We examined the I/O performance under the polling-
based I/O subsystem. We ran two experiments, one for
single thread and the other for ten threads, where each
thread in the experiment generates 4 KB random write
followed by fsync(). We created ten threads to exam-
ine how polling-based I/O behaves when there are fre-
quent TLB misses. Table 1 shows the results. In the
single-thread case, the performance gain shows marginal
gain of 1-2% when CPU is idle; the performance gain
in the polling-based I/O is 13% when the smartphone is
recording HD video in the background. When there were
ten threads, the performance gain is slightly smaller, but
it still shows 10.1% performance gain while recording
HD video. As discussed in Yang et al. [32], the perfor-
mance gain will be more significant with a faster storage
medium.

6.5 Replay of Real Workload
As the final step to verify the effectiveness of the op-
timization, we examined the performance of each opti-
mization technique under a real workload. We collected
the system call trace and then replayed it with Mobigen.
We captured traces from two widely used Android appli-
cations: Twitter and Facebook.

By replaying captured I/O traces of Twitter and Face-
book, we extracted the duration of I/Os processed in the
two applications (Figure 10). The results of this study ex-
hibit similar characteristics to the results that we obtained
from the SQLite performance and write() followed by
fsync() performance. In both Twitter and Facebook ex-
ecution, F2FS performed the best.

7 Combining All the Improvements
We examined the SQLite performance on three filesys-
tems (EXT4 as the baseline, XFS, and F2FS) when ap-
plying the aforementioned three techniques7 in combi-

7External Journaling is not applicable to F2FS since it is a log-
structured filesystem

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

B P F E
EXT4

B P F E
XFS

B P F
BTRFS

B P F
NILFS2

B P F
F2FS

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
)

(a) Twitter

 0

 5

 10

 15

 20

 25

B P F E
EXT4

B P F E
XFS

B P F
BTRFS

B P F
NILFS2

B P F
F2FS

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
)

(b) Facebook
Figure 10: Compare execution-time of replaying script
using Mobigen/Mobibench. B: Baseline, P: Polling, F:
fdatasync(), E: External Journal

 0

 50

 100

 150

 200

 250

 300

 350

B P
EXT4

E F F+E+P F+E+P
XFS

F+P
F2FS

Q
u

e
ry

 /
 s

e
c

Insert Update

Figure 11: SQLite Performance for 1,000 database items.
16GB Transcend SD card. B: Baseline, P: Polling, F:
fdatasync(), E: External Journal. TRUNCATE mode

nation. SQLite journaling mode was set to TRUNCATE
(default).

Figure 11 illustrates the results. The baseline perfor-
mance represents the current I/O performance: 39 in-
serts/sec and 102 updates/sec. Applying fdatasync(),
external journaling, and polling-based I/O all together,
SQLite on EXT4 showed 53% and 130% performance
gains for insert and update operations, respectively.
XFS and F2FS bring greater performance enhancements.
F2FS with fdatasync() and polling-based I/O yields
the best SQLite performance: the performance of the in-
sert and update operations improved by 130% and 250%,
respectively, compared to the baseline.

Finally, we combined all of the proposed techniques.
We used WAL (write-ahead logging) SQLite journaling
mode and examined the SQLite performance on three
filesystems. Applying everything (fdatasync(), ex-
ternal journaling, polling-based I/O, and WAL SQLite

10

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  319

Table 2: Performance measurements of vertical Android I/O Stack. Measurement shows performance of SQLite
insert/sec and update/sec on 16GB Transcend SD card.

Optimizations EXT4 XFS F2FS
Insert/sec Update/sec Insert/sec Update/sec Insert/sec Update/sec

Baseline 39 102 60 149 83 171
fdatasync() (F) 46 156 60 251 88 354

External Journal (E) 51 143 82 179 - -
Polling (P) 39 109 61 153 85 226

WAL mode (W) 76 100 75 153 149 155
F + E + P 60 245 84 265 89 358

F + E + P + W 92 113 86 188 157 175

journaling mode), we achieved a 150% performance im-
provement (from 39 inserts/sec to 92 inserts/sec) for
SQLite on EXT4. When we used F2FS instead of
EXT4 in the Android I/O stack, applying everything, we
achieved a spectacular 300% performance improvement
for SQLite (from 39 inserts/sec to 157 inserts/sec). Table
2 summarizes the results.

8 Related Work
Storage I/O characterization has been extensively stud-
ied in various computing environments. Ruemmler et
al. [26] analyzed the disk I/O in three different HP-UX
systems and demonstrated that a majority of the I/O op-
erations are writes and that the majority of writes (67-
78%) are for metadata, with user-data I/O representing
only 3-41% of all accesses. Roselli et al. [25] reported
that file accesses follow a bimodal distribution: some
files are written repeatedly without being read, whereas
other files are almost exclusively for reading. Zhou et
al. [34] found that the read/write ratio in the filesystem
is 80%/20% and that the majority of write I/Os are ran-
dom. Harter et al. [8] studied the I/O behavior of the
Mac OS filesystem and demonstrated that sequential I/O
on a file rarely results in sequential I/O on a block de-
vice because of the complex XML-based document for-
mat. Prabhakaran et al. [22] provided a thorough anal-
ysis of journaling filesystems, such as EXT4, ReiserFS,
JFS, and NTFS, and explained the events that cause data
and metadata to be written to the journal. Piernas et
al. [21] suggested separating the metadata from the data
and demonstrated that this separation may improve the
filesystem’s performance.

There are a variety of interesting studies regarding
smartphones, ranging from analyzing user behavior [7]
to measuring power consumption [6], security [31, 30],
and storage performance [11]. Kim et al. [11] demon-
strated that the conventional wisdom that storage band-
width is higher than network bandwidth must be recon-
sidered for smartphones. They demonstrated that stor-
age performance does indeed affect the performance of
application and operating system because the network
bandwidth has increased significantly. Kim et al. [12]

proposed a new buffer cache replacement scheme that
provides a better sequential access in NAND storage de-
vices. Lee et al. [14] analyzed the I/O behavior of eleven
smartphone applications and found that the journaling ef-
forts of SQLite and EXT4 compound with each other and
result in excessive random write operations. To mitigate
the overhead of random writes in NAND-based storage,
Min et al. [19] proposed merging multiple random writes
into a single write in the log-structured filesystem. This
approach does not work on the Android platform where
individual random writes are synchronized to the storage.

Yang et al. [32] demonstrated that in ultra-low la-
tency devices using next-generation non-volatile mem-
ory, polling can deliver a higher performance than the
traditional interrupt-driven I/O.

9 Conclusions
Modern OSes adopt a layered architecture that guar-
antees the independent operation of each layer; how-
ever, neglecting the underlying mechanisms produces a
considerable amount of overhead related to the storage
device. The well-designed SQLite and EXT4 compo-
nents have unexpected effects on NAND-based storage
devices when combined together because they produce
many small, random, and synchronous write I/Os due to
their misaligned interaction. We thoroughly analyzed the
I/O stack (DBMS, filesystem, and block device driver)
of Android. We examine the block level I/O behavior
of SQLite operation under its five journal modes with
five different filesystems in combinatorial manner. By
removing frequent updates of the metadata, dislocating
the EXT4 journal to separate storage, and using polling-
based I/O, we have achieved a significant performance
improvement in the insert and update rates. With the
F2FS filesystem, WAL journaling mode (SQLite), and
the combination of our improvements, we have observed
an overall performance increase of 300% in SQLite per-
formance.

10 Acknowledgements
We would like to thank our shepherd Steve Ko, and
anonymous reviewers for insightful comments and sug-

11

320  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

gestions. This work is sponsored by IT R&D pro-
gram MKE/KEIT. [No.10035202, Large Scale hyper-
MLC SSD Technology Development], and by IT R&D
program MKE/KEIT. [No. 10041608, Embedded system
Software for New-memory based Smart Device].

References

[1] F2FS patch on LKML. https://lkml.org/lkml/2012/10/

5/205.

[2] Linux programmer’s manual for fdatasync. http:

//www.kernel.org/doc/man-pages/online/pages/

man2/fsync.2.html.

[3] EMBEDDED MULTI-MEDIA CARD(e-MMC), ELECTRICAL
STANDARD (4.5 Device), June 2011.

[4] ARLITT, M., AND WILLIAMSON, C. Internet web
servers: Workload characterization and performance implica-
tions. IEEE/ACM Trans. on Networking (ToN) 5, 5 (1997), 631–
645.

[5] BITYUTSKIY, A. Jffs3 design issues, Nov. 2005.

[6] CARROLL, A., AND HEISER, G. An analysis of power consump-
tion in a smartphone. In Proc. of the USENIX Annual Technical
Conference (Boston, MA, US, June 2010).

[7] FALAKI, H., MAHAJAN, R., KANDULA, S., LYMBEROPOU-
LOS, D., GOVINDAN, R., AND ESTRIN, D. Diversity in smart-
phone usage. In Proc. of the 8th international conference on Mo-
bile systems, applications, and services (2010), ACM, pp. 179–
194.

[8] HARTER, T., DRAGGA, C., VAUGHN, M., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. A file is not a file: un-
derstanding the I/O behavior of apple desktop applications. In
Proc. of SOSP (2011), T. Wobber and P. Druschel, Eds., ACM,
pp. 71–83.

[9] JEONG, S., LEE, K., HWANG, J., LEE, S., AND WON, Y. An-
drostep: Android storage performance analysis tool. In ME13:
In Proc. of the First European Workshop on Mobile Engineering,
Aachen, Germany (Feb. 26 2013), vol. 215 of Lecture Notes in
Informatics, pp. 327–340.

[10] KANT, K., AND WON, Y. Server capacity planning for web traf-
fic workload. IEEE Trans. on Knowledge and Data Engineering
11, 5 (Sep 1999), 731–747.

[11] KIM, H., AGRAWAL, N., AND UNGUREANU, C. Revisiting
storage for smartphones. In Proc. of the 10th USENIX Conference
on File and Storage Technologies, San Jose, CA, USA, February,
2012.

[12] KIM, H., RYU, M., AND RAMACHANDRAN, U. What is a good
buffer cache replacement scheme for mobile flash storage? In
Proc. of the 12th ACM SIGMETRICS/PERFORMANCE, London,
UK (2012), ACM, pp. 235–246.

[13] KONISHI, R., AMAGAI, Y., SATO, K., HIFUMI, H., KIHARA,
S., AND MORIAI, S. The linux implementation of a log-
structured file system. SIGOPS Oper. Syst. Rev. 40, 3 (July 2006),
102–107.

[14] LEE, K., AND WON, Y. Smart layers and dumb result: Io charac-
terization of an android-based smartphone. In EMSOFT 2012: In
Proc. of International Conference on Embedded Software, Tam-
pere, Finland (Oct. 7-12 2012).

[15] LEE, S., MOON, B., AND PARK, C. Advances in flash memory
ssd technology for enterprise database applications. In Proc. of
the 35th SIGMOD international conference on Management of
data, Providence, USA (2009), ACM, pp. 863–870.

[16] LEE, S., SHIN, D., KIM, Y.-J., AND KIM, J. Last: Locality-
aware sector translation for nand flash memory-based storage sys-
tems. SIGOPS Oper. Syst. Rev. 42, 6 (2008), 36–42.

[17] LEIMBACH, C. Dram share in tablets growing to the detriment
of pcs. DRAM Dynamics, issue 23, Sep 2012.

[18] MEEKER, M. Kpcb internet trends year-end update. Kleiner
Perkins Caufield & Byers, Dec 2012.

[19] MIN, C., KIM, K., CHO, H., LEE, S.-W., AND EOM, Y.-I. SFS:
Random write considered harmful in solid state drives. In Proc.
of the 10th USENIX conference on File and storage technologie
(San Jose, CA, USA, Feb. 2012).

[20] PARK, D., AND DU, D. Hot data identification for flash-based
storage systems using multiple bloom filters. In Proc. of Mass
Storage Systems and Technologies (MSST), 2011 IEEE 27th Sym-
posium on (may 2011), pp. 1 –11.

[21] PIERNAS, J., CORTES, T., AND GARCIA, J. M. The design of
new journaling file systems: The dualfs case. IEEE Trans. on
Computers 56, 2 (2007), 267–281.

[22] PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Analysis and evolution of journaling file sys-
tems. In Proc. of the USENIX Annual Technical Conference, Gen-
eral Track, Anaheim, CA, USA (2005), pp. 105–120.

[23] RISKA, A., AND RIEDEL, E. Disk drive level workload charac-
terization. In Proc. of the USENIX Annual Technical Conference,
General Track (2006), USENIX, pp. 97–102.

[24] RODEH, O., BACIK, J., AND MASON, C. Btrfs: The linux b-tree
filesystem. IBM Research Report (July 2012).

[25] ROSELLI, D., LORCH, J. R., AND ANDERSON, T. E. A com-
parison of file system workloads. In Proc. of the USENIX Annual
Technical Conference (Berkeley, CA, June 18–23 2000), pp. 41–
54.

[26] RUEMMLER, C., AND WILKES, J. UNIX Disk Access Patterns.
In Proc. of Winter USENIX (1993), pp. 405–20.

[27] SALAH, K., AND QAHTAN, A. Implementation and experimen-
tal performance evaluation of a hybrid interrupt-handling scheme.
Computer Communications 32, 1 (2009), 179–188.

[28] SHIN, D. About SSD. In Proc. of the USENIX Linux Storage and
Filesystem Workshop (LSF08), San Jose, CA (2008).

[29] SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C.,
NISHIMOTO, M., AND PECK, G. Scalability In The Xfs File
System. In Proc. of the USENIX Annual Technical Conference
(Berkeley, CA, USA, 1996), USENIX Association, pp. 1–1.

[30] VENNON, T. A study of known and potential malware threats.
Tech. rep., SMobile Global Threat Center, Feb 2010.

[31] VIDAS, T., VOTIPKA, D., AND CHRISTIN, N. All your droid
are belong to us: A survey of current android attacks. In Proc. of
the 5th USENIX conference on Offensive technologies, San Fran-
cisco, CA (2011), USENIX Association, pp. 10–10.

[32] YANG, J., MINTURN, D., AND HADY, F. When poll is better
than interrupt. In Proc. of the 10th USENIX Conference on File
and Storage Technologies, San Jose, CA, USA, February, 2012.

[33] YOON, C., KIM, D., JUNG, W., KANG, C., AND CHA, H.
Appscope: Application energy metering framework for android
smartphone using kernel activity monitoring. In Proc. of the
USENIX Annual Technical Conference (Boston, MA, US, June
2012).

[34] ZHOU, M., AND SMITH, A. J. Analysis of personal computer
workloads. In Proc. of the 7th International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommunica-
tion Systems, MASCOTS (1999), pp. 208 –217.

12

