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Abstract
Social networks often require the ability to perform low
latency graph computations in the user request path. For
example, at LinkedIn, we show the graph distance and
common connections when we show a profile in any
context on the site. To do this, we have developed a
distributed and partitioned graph system that scales to
hundreds of millions of members and their connections,
handling hundreds of thousands of queries per second.

To accomplish this scaling, real time distributed graph
traversal is converted into set intersections that are ac-
complished in a scatter/gather manner. A network per-
formance bottleneck forms on the gather node as it must
merge partial results from many machines. In this paper,
we present a modified greedy set cover algorithm that
is used to locate the minimal set of machines that can
serve the partial results. Our results indicate that we are
able to save 25% in the 99th percentile latency of these
graph distance calculations for LinkedIn’s social graph
workloads.

1 Introduction
Many online social networks require the ability to
perform graph computations in the request/response
loop. Nowhere is this more acute a problem than at
LinkedIn, the largest online professional social network
with 225 million members and a company founded
around the notion of members and their networks.

For example, Figure 1 shows the search results page.
Here, the degree distances (1st, 2nd, 3rd) and the number
and set of common connections to the searcher are shown.
For user experience reasons and because these are core
to the concept of the LinkedIn product and its notion of
a professional network, this decoration cannot be approx-
imated. For example, visibility and privacy business rules
require that members cannot see profiles more than three
degrees away from them in the social graph.

At LinkedIn, these graph-based metrics are computed
online with our distributed graph service. This service

allows application developers to perform common graph
operations such as retrieving a member’s connections,
computing shared connections between members, and
calculating distances in the graph (that is the graph
distance)—all on page load. The system easily supports
graphs of hundreds of millions of nodes. There is con-
siderable request response fan-out from applications—for
example, the search result page performs one common
connection and one degree distance calculation per
result—and this distributed graph serves hundreds of
thousands of queries per second. Naturally, for a good
user experience, latency is our primary concern.

The graph service is horizontally partitioned so
that a member’s entire adjacency list is stored on one
physical node. Computing the graph distance in a naı̈ve
fashion through breadth-first traversal is intractable as
it would require O(n2)—where n is the average number
of connections per member—distributed calls throughout
the cluster, effectively touching every machine. Instead,
a two-tier architecture is employed. The source’s second
degree is stored as compressed sorted arrays in the
Network Cache Service (NCS), which communicates with
a key-value database of edges called GraphDB. Graph
distances are computed through efficient set intersections.
Around 80% of the calls for distances at LinkedIn can be
satisfied by NCS and thus generate no additional remote
calls to GraphDB.

However, a challenge arises during a second degree
cache miss. To construct a member’s second degree array,
scatter-gather merging occurs that deduplicates partial
second degrees from each GraphDB node. As social
networks are tightly interconnected, there is significant
overlap in this set merge. The merging can be performed
at either the NCS layer, which creates a bottleneck on
bandwidth [9] and CPU resources, or preferably can be
pushed down to the GraphDB nodes as much as possible.
To maximize such merging, we want to find the optimal
set of GraphDB nodes that can serve such second degree
queries to reduce merging within NCS. In this paper, we



Figure 1. An example search result page showing the top 3
results. Each result is decorated with the number and set of
connections in common and the degree distance from the
searcher (1st, 2nd, or 3rd) as indicated by the picture.

will explain how we use a greedy set cover algorithm to
reduce the average number of GraphDB nodes requested
to serve second degree queries, and to move merging and
deduplication from NCS to GraphDB nodes.

Results with LinkedIn’s graph and workload indicate
that this optimization reduces 95th and 99th quantile
cache construction latency by 18% and 38% respectively,
cumulating in a 25% reduction in the 99th percentile
latency for graph distance calculations. This latency
reduction is particularly important because it reflects a
better user experience for members with a large number
of connections—LinkedIn’s most active members.

While this paper presents LinkedIn’s solution, the
authors believe large-scale low latency graph queries are
an emerging research direction. This problem presents
significant challenges around scalability, particularly as
real-world graphs exhibit power law distributions [1].

2 The Distributed Graph
LinkedIn’s distributed connection graph infrastructure
consists of three major subcomponents as shown in
Figure 2. Subcomponents include graph database,
GraphDB, which stores member connections; a consis-
tently hashed [5] caching layer that converts distributed
graph traversals into efficient set operations; and an
API layer that isolates the frontend clients from graph
query implementations. It handles arbitrary graphs,
including but not limited to the social graph. For ease
of presentation, we will focus on the social graph, but
without loss of generality, these techniques apply to
graphs of other entities in the LinkedIn ecosystem as well.

LinkedIn’s distributed graph supports the following
APIs:
GetConnections — Returns a member’s connections

based on a member ID and optional filters. This
API answers questions such as “Who does member
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Figure 2. LinkedIn’s distributed graph system consists of
three major subcomponents: a partitioned and replicated graph
database referred to as GraphDB; a distributed cache called
Network Cache Service (NCS) that stores a member’s network
and serves queries requiring second degree knowledge; an API
layer for the frontend.

X know?” and “How many new connections did
member Y add since the last log in?”.

GetSharedConnections — Compares two members’
connections and returns the intersection. This API
answers questions such as “Who do I know in
common with member Y?”.

GetDistances — Includes more than 50% of the graph
operations. It takes a source member ID and a set
of destination member IDs, then returns the network
distance between the source to each destination up
to three degrees of separation.

2.1 Graph Partitioning and Replication
In GraphDB, members are represented as vertices, and
connections as edges. It partitions this graph into a
cluster of physical machines based on member IDs. A
hash-based partitioning is used so that workloads are
more likely to be evenly distributed. Partition IDs are
calculated based on member IDs, eliding the need to
maintain a heavy in-memory data structure of a mapping
between member IDs and partition IDs. Each member’s
connections are sorted by ID and colocated on the same
partition that stores their information. We use N to
represent the total number of partitions in our system.
N is chosen to be large enough so that when the graph
grows, the partition size remains reasonably small so as
to fit several onto one physical machine.

Each partition is replicated on at least R different
machines to provide failover and load balancing. Each
physical machine holds P partitions. If we use Z to
represent the total number of physical machines in the
cluster, then Z = (N ·R)/P.

To prevent hot spots, we randomize the set of partitions
colocated physically. If two partitions are stored on the
same machine in one replica, they will be stored on differ-
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Figure 3. Partitions are randomly grouped on physical machines
in each replica. We have a total of N partitions. Each node stores
P partitions, thus one replica consists of
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nodes. Replication
factor is R. The entire cluster consists of (N ·R)/P nodes.

ent machines in other replicas. This ensures that if both
partition i and partition j are more frequently visited, they
are only colocated on the same physical machine once.

For design and operational simplicity, we do not
distinguish which replica a machine belongs to once
it joins the cluster. At LinkedIn, the entire cluster of
machines storing member’s first degree connections
and its replicas is called GraphDB. In this paper, each
physical machine in this cluster is referred to as a
GraphDB node or simply as a node.

2.2 GetDistances Algorithm

Both GetConnections and GetSharedConnections have
a complexity of O(n) where n is the average number of
connections per member. In both cases, the API layer
fetches connections from GraphDB once and performs
any filtering or intersection locally.

GetDistances requires multiple hops. With Breadth
First Search (BFS), cost complexity increases exponen-
tially: looking up a member connection’s connections in
the worst case would involve O(n) remote calls with a
cost complexity of O(n2). For most LinkedIn users, this
call would cause one remote call to every GraphDB node
in the cluster. We need a more efficient solution.

If we store a member’s first and flattened second
degree connections in a cache, then the distances between
this member and a set of destinations can be determined
by intersecting the destination IDs with the data in the
cache. No call to GraphDB is required if all destinations
are within two degrees. For those who fall out of two
degrees, one remote call is generated per destination to
fetch the connections and intersect them with the source
member’s second degree to determine whether they are
three degrees apart.

This motivated us to build a caching layer, referred to
as the Network Cache Service (NCS) to store the first and
second degree connections of members visiting LinkedIn.
This cache entry can then be used to perform additional
GetDistances calls for the same user much faster during
any active login session.

2.3 Network Cache Service
The API layer diverts GetDistances calls to NCS. If NCS
contains a valid cache for the requested source member,
distances can be computed in NCS by performing array
intersections. If the cache is not available, this request
waits for the cache entry to be built online. We use an LRU
caching strategy with a short TTL to provide a real-time
view of the graph. These arrays are compressed using
delta compression [12] to further reduce memory usage.

One of the biggest challenges we face is to assemble
the second degree connections quickly in real time on
a cache miss. Some LinkedIn members have millions
of second degree connections, yet we still need to serve
GetDistances quickly. A member’s second degree size
grows exponentially compared to first degree connections.
Investing in hardware alone cannot catch up with the
exponential growth of connection density. We need to
examine software solutions to manage latency growth.

To compute a member’s second degree connections, we
retrieve first degree connections from a single GraphDB
node, then shard them into multiple GraphDB nodes to
query their connections. Each GraphDB node receiving
the second degree query will look up and merge its local
result, removing duplicates prior to sending the results
back. NCS waits until all responses return from the
GraphDB nodes before merging the results into a final
sorted array before compression.

Merges and deduplications are done on both in
GraphDB and on NCS. In GraphDB, merging and
deduplication is processed in parallel, whereas a single
NCS machine merges all intermediate results into a
complete sorted array that can be both CPU intensive and
time consuming.

We measured the time spent on constructing network
cache for members with various network sizes and found
the time NCS spent on merging and removing duplicated
connections from partial results is always the bottleneck
and tends to be worse for members with larger networks.
We also noticed that for users with a few hundred
connections, partial responses often come back from
all (N ·R)/P GraphDB nodes instead of N/P machines.
This means for these users, each GraphDB node is only
merging n

(N·R)/P = n·P
N·R connections locally, where n

represents the number of connections for a member. NCS,
on the other hand, is performing a (N ·R)/P-way merge.
Thus, the bigger the cluster we have, the less work will
need to be done on the GraphDB side in parallel, leaving
the (N ·R)/P-way merge in NCS the single significant
bottleneck during cache construction.

We sampled a set of members having tens of connec-
tions to tens of thousands of connections. We measured
the time NCS spent on merging partial results from a
single replica GraphDB cluster versus our multi-replica
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Figure 4. Simplified example graph: a distributed graph with
six partitions. Node IDs are represented as Rij, where Ri1, Ri2,
and Ri3 make one full replica of the graph. The integers inside
the nodes are partition IDs.

production cluster. For users with a few hundred
connections, time spent on merging results from the
multi-replica cluster is twice as much as from a single
replica. For users with tens of thousands of connections,
the delta drops to a 50% difference.

If we minimize the fan-out and reduce the number of
GraphDB nodes requested to serve second degree queries,
we can reduce merges and deduplications done on the
NCS side and take advantage of the performance gain
mentioned previously. Our problem now becomes select-
ing a minimum number of GraphDB nodes that cover
every partition requested in a member’s second degree
query. This an application of the set cover problem [3].

3 Set Cover in a Distributed Graph
Given a set of elements K={1,2, ...,m} and L =
{S1,S2, . . . ,Si, . . .} whose union comprises K, the classic
set cover problem is to find a minimum number of sets
from L whose union contains all elements in K.

The set cover problem in our distributed graph is to
find the minimal set of GraphDB nodes that covers K to
serve a member’s second degree query.

Set cover is known to be NP-hard, but a simple greedy
heuristic algorithm offers a logarithmic ratio bound [3].
This algorithm works by picking, at each iteration, the
set Sk that covers the most remaining uncovered elements
in K. An example of how this works follows.

Assume we have a distributed graph comprised of six
partitions. We store two partitions on each node with two
replicas as shown in Figure 4. We use R11, R12, . . . R23 to
index the GraphDB node, thus L= {SR11, SR12, . . . SR23}.

A member’s second degree connections are stored on
partitions 1,2,3,4, and 6. To serve this query, this greedy
algorithm first intersects K = {1,2,3,4,6} with every set in
L, then selects node R11 that covers the most partitions in
K (Figure 5a). Partitions 1 and 2 are removed from K, and
SR11 is removed from L. In the next iteration, each remain-
ing set in L intersects with K = {3,4,6}, and node R23
is selected for maximum coverage. In the last iteration,
K = {4} and R12 is selected. See Figure 5 for illustration.

The ratio bound of this algorithm is ln(Smax) + 1,
where Smax is the maximum size of set Si in L. When each
GraphDB node stores P partitions, the ratio bound of
greedy set cover in distributed graph becomes ln(P)+1.
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Figure 5. Using the classic greedy set cover algorithm to find
a set of GraphDB nodes for second degree query. In 5a, K
intersects with all 6 nodes and removes SR11 from L when it
is done. In 5b, K intersects with each of the remaining 5 nodes,
and removes SR23. In the last step 5c, K intersects with the
remaining 4 nodes from L.

C← /0
repeat

pk← randomly selected partition from K
nodes← map[pk]
for node from nodes not added to C do

Find nodek with coverage Sk maximizing | K∩Si |
end for
K← K−Sk
C←C∪{nodek}

until C covers all elements in K
return C

Figure 6. Modified set cover algorithm: traditional set cover
algorithm performs | K∩Sm |. Sm represents partitions covered
by nodem, where nodem represents all remaining unselected
nodes; our set cover algorithm only performs set intersection
between K and Si, where nodei contains some randomly
picked partition ID pk, dramatically reducing the number of
set intersections required.

Without using set cover, we effectively have a ratio
bound of R where R is the number of replicas in the
system. In our system, R is almost twice as much as
ln(P)+1. Applying greedy set cover algorithm, we are
able to distribute the second degree query to 50% fewer
GraphDB nodes, thus shifting the array merges from
NCS to GraphDB nodes.

The catch is to find the set that has the maximum
coverage during each iteration, so we intersect K with
every remaining set Si from L. We use l to represent the
size of L. We will perform O(l2) set intersections. These
intersections introduce an additional latency, significant
for users with fewer than a hundred connections.

We are able to modify this greedy algorithm by taking
advantage of an additional property of our sets: sets from
the same GraphDB replica do not intersect with each
other. The idea is to avoid doing an intersection between
K and all remaining nodes by restricting it, such that it
only intersects with a much smaller subset of nodes that’s
more likely to provide the best coverage.

We first built a mapping from partition IDs to
GraphDB nodes. For partition pi, map[pi] returns the set
of GraphDB nodes that covers pi.
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Figure 7. With modified greedy set cover algorithm, nodes
represent the sets used in each iteration to intersect with K when
partition 3 is selected in 7a and partition 6 is selected in 7b.

Our modified greedy algorithm is shown in Figure 6.
Using the same example discussed previously, this
modified greedy set cover algorithm will randomly pick
a partition in K = {1,2,3,4,6}. If we assume partition 3
is selected, that means nodes = {SR12,SR23}. We now
intersect these two nodes with K instead of every node
in the cluster. If node R12 is selected, then K = {1,2,6},
and C = {R12}. In the next iteration, we randomly pick
partition 6 from {1,2,6}, now nodes = {SR13,SR23}.
Again only two intersections are required to pick the best
coverage. If we say R23 is selected in this iteration, then
K = {1,2} and C = {R12, R23}. In the last iteration, no
matter which partition is selected, R11 will be picked.
See Figure 7 for illustration.

Instead of finding the set with maximum coverage
by intersecting K with each remaining set from L, we
have intersections only across the replicas covering
the randomly picked partition ID pk, thus reducing the
O(

⌈N
P

⌉
· R) intersection to O(R). This implementation

dramatically reduced the time spent on performing
intersections, thus avoiding additional latency.

During each iteration, the algorithm guarantees that we
either select two nodes that belong to the same replica,
a node that offers equivalent coverage, or a node that
removes at least the randomly picked partition pk. Nodes
that belong to the same replica as the already selected
nodes have a higher probability of being picked because
nodes from the same replica do not intersect with each
other, and so have a better chance to offer higher coverage.

4 Evaluation
Our evaluation answers the following two questions:

1. What is the performance of NCS second degree
cache creation with the set cover optimization?

2. What is the performance of the GetDistances call
with the set cover optimization?

We ran these experiments on the LinkedIn graph
service in production for one high traffic day by splitting
the NCS nodes so that half ran the set cover optimization.

Figure 8 shows the 95th and 99th percentile latencies
in building second degree caches. With the set cover
optimization, the 95th percentile latency dropped 18%
while the 99th percentile latency dropped 38%.
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Figure 8. The latency of network cache building in NCS with
and without the set cover optimization. The 95th quantile
latencies dropped 18%, while the 99th latency dropped 38%.
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Figure 9. Latency of the GetDistances call with and without
the set cover optimization. The 95th quantile latencies dropped
7% and the 99th quantile latencies are down 25%.

Figure 9 shows the 95th and 99th percentile latencies
for the GetDistance call. The 95th percentile latency
dropped approximately 7% while the 99th percentile
latency dropped 25% on NCS nodes that use set cover
optimization during request sharding.

In terms of aggregate cluster statistics, the total number
of outbound traffic dropped over 40% while overall
inbound traffic dropped 10%.

By reducing sharding and nodes visited in a second
degree cache query, we moved work for second degree
calculation from NCS to GraphDB nodes. NCS thus
merges fewer responses. These results indicate that using
a greedy set cover approach to find a close-to-optimal
set of GraphDB nodes to serve second degree queries
has a significant impact on reducing aggregate cluster
bandwidth and overall latency of the system.

5 Related Work
Single-node graph databases are unable to scale to large
graphs [11]. Most distributed graph systems research,
such as Pregel [7] and GraphLab [6], focus on offline
queries, particularly supporting iterative algorithms like
PageRank. Their latencies are insufficient for any online
serving application.

Research graph systems for online serving applications
mostly focus on replicating social graph state to co-locate



a member’s neighbors on the same physical node using
one-hop replication strategies [10]. This reduces latency,
but at a relatively high cost of additional replication.
Recent work reduces this replication factor based on
either read/write frequencies [8] or temporal locality [2].
Other research focuses on multicore or GPU-based
mechanisms for graph traversal [4]. This research shows
promise and some ideas can be incorporated into a real
production system if the right level of performance,
service, and operability can be achieved.

6 Conclusion & Future Work
In this paper, we presented an application of set cover to
locate the minimal set of machines for merging partial
second degrees in a distributed graph architecture. This
insight allows us to reduce the 99th percentile latency by
38% in cache construction. As a result, we can achieve
25% reduction in the 99th percentile latency for graph
distance calculations.

There is ample future work in this area. LinkedIn’s dis-
tributed graph infrastructure stores not only quadratically
growing members and their connections, but also other
types of vertices and edges. For example, companies and
members who follow these companies or schools and
their alumni have orders of magnitude more edges and
are significantly more skewed than the typical members.
This requires new approaches.

For instance, we are investigating incremental updates
to a member’s second degree network without transferring
and aggregating the entire dataset. The idea is, for each
NCS node, the system calculates the second degree set
for a member once, storing it in memory and persisting
in second storage. When a user visits the site later, only
incremental changes are fetched from GraphDB nodes
based on the last timestamp stored. This approach can
dramatically reduce the size of the data transferred, thus
reducing burden on GraphDB and improving the second
degree calculation time.

In addition, new site features require fairly complex
queries that can identify advanced relationships between
members, such as: member A who went to school with
member B who worked years ago with member C—which
must be satisfied in the request/response path. This
increased data volume engenders further data distribution,
increasing the penalty on remote communication for such
queries. It also becomes unrealistic to build second degree
caches for all or even a partial set of the combinations
of entities in our graph stores.
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